Novel genetic approach to investigate the role of plasma secretory phospholipase A2 (sPLA2)-V isoenzyme in coronary heart disease: modified Mendelian randomization analysis using PLA2G5 expression levels.
Circulation. Cardiovascular genetics 2014 ; 7: 144-50.
Holmes MV, Exeter HJ, Folkersen L, Nelson CP, Guardiola M, Cooper JA, Sofat R, Boekholdt SM, Khaw KT, Li KW, Smith AJ, Van't Hooft F, Eriksson P, Franco-Cereceda A, Asselbergs FW, Boer JM, Onland-Moret NC, Hofker M, Erdmann J, Kivimaki M, Kumari M, Reiner AP, Keating BJ, Humphries SE, Hingorani AD, Mallat Z, Samani NJ, Talmud PJ, CARDIoGRAM Consortium
DOI : 10.1161/CIRCGENETICS.113.000271
PubMed ID : 24563418
PMCID : PMC4212409
URL : https://www.ahajournals.org/doi/10.1161/CIRCGENETICS.113.000271
Abstract
Secretory phospholipase A2 (sPLA2) enzymes are considered to play a role in atherosclerosis. sPLA2 activity encompasses several sPLA2 isoenzymes, including sPLA2-V. Although observational studies show a strong association between elevated sPLA2 activity and CHD, no assay to measure sPLA2-V levels exists, and the only evidence linking the sPLA2-V isoform to atherosclerosis progression comes from animal studies. In the absence of an assay that directly quantifies sPLA2-V levels, we used PLA2G5 mRNA levels in a novel, modified Mendelian randomization approach to investigate the hypothesized causal role of sPLA2-V in coronary heart disease (CHD) pathogenesis.
Using data from the Advanced Study of Aortic Pathology, we identified the single-nucleotide polymorphism in PLA2G5 showing the strongest association with PLA2G5 mRNA expression levels as a proxy for sPLA2-V levels. We tested the association of this SNP with sPLA2 activity and CHD events in 4 prospective and 14 case-control studies with 27 230 events and 70 500 controls. rs525380C>A showed the strongest association with PLA2G5 mRNA expression (P=5.1×10(-6)). There was no association of rs525380C>A with plasma sPLA2 activity (difference in geometric mean of sPLA2 activity per rs525380 A-allele 0.4% (95% confidence intervals [-0.9%, 1.6%]; P=0.56). In meta-analyses, the odds ratio for CHD per A-allele was 1.02 (95% confidence intervals [0.99, 1.04]; P=0.20).
This novel approach for single-nucleotide polymorphism selection for this modified Mendelian randomization analysis showed no association between rs525380 (the lead single-nucleotide polymorphism for PLA2G5 expression, a surrogate for sPLA2-V levels) and CHD events. The evidence does not support a causal role for sPLA2-V in CHD.