GWAS of mosaic loss of chromosome Y highlights genetic effects on blood cell differentiation.
Nature communications 2019 ; 10: 4719.
Terao C, Momozawa Y, Ishigaki K, Kawakami E, Akiyama M, Loh PR, Genovese G, Sugishita H, Ohta T, Hirata M, Perry JR, Matsuda K, Murakami Y, Kubo M, Kamatani Y
DOI : 10.1038/s41467-019-12705-5
PubMed ID : 31624269
PMCID :
URL : https://www.nature.com/articles/s41467-019-12705-5
Abstract
Mosaic loss of chromosome Y (mLOY) is frequently observed in the leukocytes of ageing men. However, the genetic architecture and biological mechanisms underlying mLOY are not fully understood. In a cohort of 95,380 Japanese men, we identify 50 independent genetic markers in 46 loci associated with mLOY at a genome-wide significant level, 35 of which are unreported. Lead markers overlap enhancer marks in hematopoietic stem cells (HSCs, P ≤ 1.0 × 10). mLOY genome-wide association study signals exhibit polygenic architecture and demonstrate strong heritability enrichment in regions surrounding genes specifically expressed in multipotent progenitor (MPP) cells and HSCs (P ≤ 3.5 × 10). ChIP-seq data demonstrate that binding sites of FLI1, a fate-determining factor promoting HSC differentiation into platelets rather than red blood cells (RBCs), show a strong heritability enrichment (P = 1.5 × 10). Consistent with these findings, platelet and RBC counts are positively and negatively associated with mLOY, respectively. Collectively, our observations improve our understanding of the mechanisms underlying mLOY.