Variants in GLIS3 and CRY2 are associated with type 2 diabetes and impaired fasting glucose in Chinese Hans.
PLoS ONE 2010 ; 6: e21464.
Liu C, Li H, Qi L, Loos RJ, Qi Q, Lu L, Gan W, Lin X
DOI : 10.1371/journal.pone.0021464
PubMed ID : 21747906
PMCID : PMC3126830
Abstract
Recent genome-wide association studies have identified a number of common variants associated with fasting glucose homeostasis and type 2 diabetes in populations of European origin. This is a replication study to examine whether such associations are also observed in Chinese Hans.
We genotyped nine variants in or near MADD, ADRA2A, CRY2, GLIS3, PROX1, FADS1, C2CD4B, IGF1 and IRS1 in a population-based cohort including 3,210 unrelated Chinese Hans from Beijing and Shanghai.
We confirmed the associations of GLIS3-rs7034200 with fasting glucose (beta = 0.07 mmol/l, P = 0.03), beta cell function (HOMA-B) (beta = -3.03%, P = 0.009), and type 2 diabetes (OR [95%CI] = 1.27 [1.09-1.49], P = 0.003) after adjustment for age, sex, region and BMI. The association for type 2 diabetes remained significant after adjusting for other diabetes related risk factors including family history of diabetes, lipid profile, medication information, hypertension and life style factors, while further adjustment for HOMA-B abolished the association. The A-allele of CRY2-rs11605924 was moderately associated with increased risk of combined IFG/type 2 diabetes (OR [95%CI] = 1.15[1.01-1.30], P = 0.04). SNPs in or near MADD, ADRA2A, PROX1, FADS1, C2CD4B, IGF1, and IRS1 did not exhibit significant associations with type 2 diabetes or related glycemic traits (P≥0.10).
In conclusion, our results indicate the associations of GLIS3 locus with type 2 diabetes and impaired fasting glucose in Chinese Hans, partially mediated through impaired beta-cell function. In addition, we also found modest evidence for the association of CRY2-rs11605924 with combined IFG/type 2 diabetes.